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Abstract

A compact scheme is a discretization scheme that is advantageous in obtaining highly
accurate solutions. However, the resulting systems from compact schemes are tridiag-
onal systems that are difficult to solve efficiently on parallel computers. Considering
the almost symmetric Toeplitz structure, a parallel algorithm, simple parallel prefix
(SPP), is proposed. The SPP algorithm requires less memory than the conventional
LU decomposition and is highly efficient on parallel machines. It consists of a prefix
communication pattern and AXPY operations. Both the computation and the commu-
nication can be truncated without degrading the accuracy when the system is diagonally
dominant. A formal accuracy study has been conducted to provide a simple truncation
formula. Experimental results have been measured on a MasPar MP-1 SIMD machine
and on a Cray 2 vector machine. Experimental results show that the simple paral-
lel prefix algorithm is a good algorithm for the compact scheme on high-performance
computers.
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1 Introduction

Recent technological advances have made it possible to build computers that contain thousands of
processors and can obtain gigaflops (109 floating-p3int operations per second) on real applications.

Emerging parallel computers are designed to solve large problems and achieve better accuracy
than could previously be obtained [19]. Parallel computers demand new models, new discretization

methods, and new algorithms to explore the potential of high-performance computing.

Conventionally, partial differential equations (PDEs) are discretized by finite-difference or finite-

element methods, and are solved by Gauss-Seidel, conjugate-gradient, or successive overrelaxation

(SOR) methods. A new discretization method, the compact finite-difference scheme (or compact-
difference scheme, compact scheme) was proposed by Kreiss and Oliger [10] and was later im-

proved upon by Lele [14]. Compared with the traditional finite-difference scheme, the compact
finite-difference scheme achieves higher accuracy with smaller difference stencils and leads to more

accurate approximations because of the smaller coefficients on the truncation error. With these ad-

vantages, the compact scheme has quickly gained popularity. In practice, the resulting discretized

system of the compact schemes are tridiagonal systems that can be solved efficiently on sequential

machines. However, tridiagonal systems are difficult to solve efficiently on parallel computers. For

example, to study the physics of compressible homogeneous turbulence, the CDNS (compressible

direct simulation of Navier-Stokes) code, based on a sixth-order compact scheme and a third-order

time discretization, was implemented on the Intel Delta [5]. After carefully choosing an existing

tridiagonal solver, mapping the algorithm to the architecture, and overlapping communication with

computation, the communication overhead consumed about 30 percent of the total execution time.

Clearly, more efficient algorithms are needed to explore the potential of compact schemes on parallel

computers.

In recent years, intensive research has been done to develop efficient tridiagonal solvers on
parallel computers. A good survey can be found in references [15], [7], and [12]. Of the known

tridiagonal solvers, both the recursive-doubling reduction method (RCD) developed by Stone [17],

and the odd-even, or cyclic, reduction method (OER) developed by Hockney [8] are able to solve an

n-dimensional tridiagonal system in O(log(n)) time using n processors. These methods are designed

for fine-grain computing. Substructured methods developed by Lawrie and Saineb [13], Wang [24],

and Sun, Zhang, and Ni [23) were designed for median-grain and coarse-grain computing (i.e., the

case of p < n or p << n, where p is the number of processors available). Lawrie and Sanih's

algorithm is designed for shared-memory machines; Wang's algorithm is designed for distributed-

memory machines; and Sun et al. proposed three different algorithms, each of which may be a better
choice depending on the problem and the machine. For compact schemes, the tridiagonal systems

have a special .t-uctiir, that consibts of diagonal dominance and are almost symmetric Toeplitz.

For this special structure, a parallel tridiagonal solver for fine-grain computing, the simple parnllel



prefix (SPP) algorithm, is proposed in this paper.

Compared with the popular tridiagonal solver for fine-grain computing known as the cyclic

reduction method [8], the SPP method is simple to implement and computationally efficient. It

requires only 2.log(n) AXPY (vector plus scalar times vector) operations and prefix communication

patterns. If the tridiagonal system is diagonally dominant, then the AXPY operations can be

truncated after a certain number of steps without degrading the accuracy. A formal accuracy

analysis is conducted and simple formulas are provided to compute the number of AXPY operations

necessary.

This paper is organized as follows. Section 2 will present the compact scheme and discretized

tridiagonal systems. Section 3 will introduce three versions of the simple parallel prefix algorithm:

the SPP for tridiagonal systems with the given special structure, the SPP for solving symmetric

Toeplitz tridiagonal systems, and the SPP for solving almost symmetric Toeplitz systems. Accuracy

analysis will be conducted in Section 4. Section 5 will give experimental results on a 16K processing

elements (PEs) MasPar SIMD computer and on a Cray 2 supercomputer. Finally, Section 6 will

give the conclusions.

2 Compact Finite-Difference Schemes

With the conventional finite-difference and finite-element discretization methods, as the order of

the approximation increases, the required number of boundary and near-boundary relations and

the required number of mesh points per derivative stencil increases accordingly. To achieve higher

accuracy without the use of additional mesh points, the compact scheme [10] was introduced. As

originally suggested by Kreiss and Oliger [10], and later discussed for fluid dynamics problems by

Hirsh [6], the first and second derivatives for compact differences may be approximated by

fI = ( fA and fZ = AhD +D_ f (1)
\l+ h2D+D- I + -Lh2D+D-

where

of= -(f.+l - f,- ), D+f. U (f4+m - f,),

D-f. = -'(f. -

and h, is the mesh spacing, which is constant for simplicity. By multiplying (1) by the respective

denominators, relations for the derivatives may be found, which yield

1 I 2 1 I 1

63 6 + 5 ," + fA+1 = 2 -,(f,,+1 - f,-I), (2)
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and
1 5, 1 (

72- ., + "f. + - ,-=(f,+l - 2f, + f,,-,). (3)

These equations yield tridiagonal systems when the appropriate boundary conditions are applied.

To make an accurate comparison between the compact-difference (eqs. (2) and (3)) and the

standard central-difference schemes, Taylor-series expansions are employed. As Hirsh has shown,

the truncation error for the compact differences are

E(f.) = 1 h4 f.(v) and E(f,::)=- 1 h4 f( vi)
180 t 240 T

Similar error analyses for the central differences yield

E f.) - h.f and E f,,) =

Although both schemes are fourth-order accura'e, the compact-difference scheme should lead to

more accurate approximations as a result of the smaller coefficients on the truncation error. Similar

results hold for other higher order approximations.

As yet, no mention has been made about the boundary treatment for the compact scheme.

At the boundaries, Hirsh [6] experimented with a variety of boundary conditions, and Adams [1]

suggested a boundary relation that includes near-boundary derivatives in the formulation. The

boundary conditions used by both Hirsh and Adams retained the tridiagonal nature of the sys-

tem. To demonstrate the SPP algorithm, fourth-order one-sided finite differences will be used for

boundary conditions.

Many relevant fluid dynamics applications can make use of high-order compact-difference oper-

ators to numerically solve the governing systems of equations. For example, Burger's equation, the

boundary-layer equations, and the driven cavity problem were solved by Hirsh [6] with compact-

difference operators. Further, Joslin et a]. [91 used the compact-difference equations (2) and (3) to

numerically solve the fully nonlinear Navier-Stokes equations of fluid dynamics.

=o0, (4)

ui 9u 10p +V 2u,
S+ U-= (5V

where u, = (ul, u 2,u3) are the velocity components that correspond to the steamwise, normal, and

spanwise directions, T ` (Xm,X2,.L 3 ); v is the kinemaLic ýiscosity, p is the de.nsity, anid repcatcd

indices infer a summation over the index. To demonstrate how compact-difference operators could

be employed to solve the nonlinear PDE's (4) and (5), consider the model problem of the one-

3



dimensional heat-conduction equation:
T= ": (6)

To solve this equation computationally, discretizations in time and space must be chosen. From

the Taylor-series expansions in time, one derives the discrete equation

UanT1 = U n "+ /Xt 02U (7)

where n is the number of time levels. If the result at level it is known, then the solution u0L+1

can be obtained if 92u/ix 2 can be determited. The spatial derivative can be computed with the

second-derivative operator (3). Each time-step advancement requires a single compact-difference

solve. In the original nonlinear PDE systems (4) and (5), both the first and second derivative

operators are required; the problem is multidimensional and requires a compact-difference solver

with many right sides. Time-marching is necessary and requires compact-difference solves at each

time level. This necessitates a fast compact-difference solver. By observation, equations (2) and

(3) take the matrix form

1 0

1 c 1

1 c I

0 1

where x = {f', f"} and c = {4, 10) correspond to the compact-difference parameters. The first and

last rows of equation (8) arise from boundary conditions. The boundary condition that corresponds

to dN+1 can be rolled into the system by XN+1 = dN+1 and dN = dN - dN+i. Thus, the system is

reduced to the N x N system:

1 0

1 c 1

"x =d (9)

1 c 1
I c

With higher orders of approximation, the resulting matrix will differ only in the boundary

conditions. However, with the appropriate restructuring given above, the resulting tridiagonal

systems can be writter, in the almost symmetric Toeplitz form described in the next section, eqn.

(10), where A is given by (12).
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3 The Simple Parallel Prefix Algorithm

We are interested in solving a tridiagonal linear system of equations

Ax = d. (10)

In this system of equations, A is either a symmetric Toeplitz tridiagonal system of order n

c 1
1 c

or an almost symmetric Toeplitz tridiagonal system of order n

a 0
1 c1

A (12)

L1 c

where x = (xI,..., Xn)T and d = (d '". , )T are n-dimensional vectors. We assume that matrix

A is diagonally dominant (i.e., Icl > 2). Although we assume that A, x, and d have real coefficients,

the extension to the complex case is straightforward.

3.1 The Simple Prefix Method

In this section, we study how to efficiently solve the system

A= d (13)

on parallel computers, where

a• 1 b ' . .

( - a b 1 1=a. [b, 1,0]. [0, 1,b],

1 c b1

and a and b are the real solutions of: { a+b =c (14)
a.b= 1

Because a . b = 1 and [cl > 2, we may further assume that lal > 1 and IbI < 1. By equation (13),

1 = a-' .[0, 1,b]-'[b, 1,0]1-d - b. [0, 1,b]-'[b, 1,0]-d.



Let L = [-b, O, 0]. Then

[b, 1,0] = [0, 1,0]- [-b,0,0] = I - L

and

[b,=,01-1 (I+L+L2 +...+Ln-1) (15)
= (I+L 2o~ n-i)(I+ 2 l-2) ...... (I+L 4 )(I+L2 )(I+L). (16)

Note that n is the dimension of matrix A and that equations (15) and (16) can be verified directly.

The superscript of matrix L represents matrix multiplication

0 0
0- (-)' 0 0

0 0 (-b)' 0 0

where the first nonzero element (-b)i is at position (i + 1, 1). Similarly, let U = [0,0, -b]. Then,

[0, 1, b] = [0, 1, 0] - [0, O, -b] = I - U,

and

[0,1,b]- 1 = (I+U+U2+...+Un--

= (I+ U2Pon°-K ) ...... (I + U 2 )(I + U),

where

(0 0 (-b) 0 0

00Ui 0 0 (-b)i
0 0

0

The first nonzero element of Ui is at position (1, i + 1). Thus, the solution of equation (13) is

; = b. (I + V2Po°j-I ) ... (I + U). (I + L 2pognl-) ...... (I + L)d (17)

Equation (17) was first used by Chung and Shen [2] in solving b-spline curve fitting on a ('ray

X/MP computer.



Let v = (v1 , v2 ,.., )T be an n-dimensional vector. Given the special structure of L', we find

(I + L')v = v + (-b)'v(j),

where
V ( i ) -- ( 0 , ' ' ' 0 V 1 l , '. ..V n - i ) T

and v, is the i + 1 element of v(1). Similarly, given the special structure of Ui, we find

(I + U')v = v + (-b)'v(),

where
0 ~) -- (i1, ',tn, 0' ...0)T.

Equation (17) shows that equation (13) can be solved with 2. Rlog nl AXPY operations. Because

IbI < 1, IIL'I -• 0 and Ii0II -- 0 when n -- oo, the AXPY operation may be truncated without
influencing the accuracy. Formulas will be given in Section 4 to compute the smallest truncation

integer k. A sequential Fortran like code for solving equation :17) within truncation error is given

in Figure 1.

Do 20 i = 1, k
Do 20 j = n, 2' + 1,-1

dj = di + (-b)+dj_2,

Do 40 i =1, k
Do4 j= 1, n-2 '

di = di + (-b)'dj+2i

Do 60 j = 1, n
,i = b . di

Figure 1. The simple prefix method.

If n processing elements are available and dj is stored in processor j, then the loop 20 and

loop 40 will lead to prefix computations. Figure 2 shows the prefix computation pattern that

correspond to loop 40 when n is equal to 8. Loop 20 leads to a similar prefix computation pattern,

except that the communication is from right to left. Prefix (or recursive doubling) computation
is a widely used computation model in scientific computing. Any linear recursive relation can be

computed by recursive doubling (21]. A recursive-doubling algorithm exists for solving tridiagonal
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systems and involves matrix-matrix multiplications [4, 23]. Compared with the existing recursive-

doubling algorithm, the computation of our prefix method for solving tridiagonal systems (13) is

simple. We call the prefix method given in Figure 1 the simple prefix method. Figure 3 shows the

communication pattern of the widely used cyclic reduction method [8]. In a comparison of figures

2 and 3, we can see that the prefix method has a relatively simple communication pattern.

Figure 2. Communication of prefix computation.

Figure 3. Communication of cyclic reduction method.

3.2 Modification of Symmetric Toeplitz System

Our goal is to find the solution of equation (10). Modification is needed to convert the solution of

equation (13) to the desired solution. The modification will be different for symmetric Toeplitz sys-
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tems and for almost symmetric Toeplitz systems. For a given symmetric Toeplitz system, equation

(13) is modified as

A = A + AA = A + VET,

where b 0
0 0 0

ZA=A. . . (18)
0 0 0

0 0

and V = (b, 0,..., 0 )T and E = (1,0,.-., O)T are n-dimensional vectors. By the matrix-modification

formula [!6, 3, 23], equation (10) can be silved by

x = A- 1 d = (A + VET)-ld

x = A- - A-1V(I + ETA-1V)-IETA-1d

"=. - A-,V(I + ETA-1V)-lii,

where il is the first element of vector i. If the calculation approach given in [18] is followed, we

have

(I + ETA-1 V)-1 + 11 + Z= b2i

and
n n-I n-2

A-' V = (Z b2i, Z(-b)b2 i, Z(-b)2 b•2 i, (-b)"+').
i=1 i=1 i=1

Thus

A-'V(I + ET4A-1V)-

= b2 (1 b 1-b ) 1 -b2(n-i) -b)' ( - b2 ) )T
b - b2(n+),"(-b) ' (-b) b( '""(-b 1 + (19)

The final solution is

z = x - iz, (20)

where vector z is the right side of equation (19). Because IbI < 1, z can be truncated at some

integer k, without affecting the accuracy (see section 4). Furthermore, when it is large, b2(-'-i+),

i = 0, 1, ... , k, will be less than machine accuracy, and z reduces to

S= ((-b)2, (-b)3 ,. .. , (-b)ki+ 2 , 0,..., 0 )T.

9



The program of modification is given in Figure 4, and the algorithm for solving the symmetric

Toeplitz tridiagonal system is given in Figure 5.

Do 80 i = 1, k,
x = •i - ixiz

Figure 4. Modification for symmetric Toeplitz systems.

Step 1:

Use the simple prefix method to find the solution to equation (13).

Step 2:

Use the modification equation (20) to obtain the final solution.

Figure 5. Algorithm for solving symmetric Toeplitz system.

3.3 Modification of Almost Symmetric Toeplitz System

A similar modification can be given to solve almost symmetric Toeplitz systems. For almost sym-

metric Toeplitz systems, equation (13) is modified such that

A =A+ AA = A + VEkT,

whe--e

0 -1 0
0 0 0

0 ' . (21)

0 0
0

10



V = (-1,0,.. IO)T, and E7 = (0, 1,0,.. .O)T. Following the matrix nmodification formula [23, 18],

the solution to equation (10) becomes

x = A-d = A-ld - A4V-1f(I + kTA-1f/)-Iff -Id
= - A f'(I + tTA-1 f)-i2,

where 12 is the second element of i. With this new modification,

(I + ET A-')-i -
a

F1-2 ( hb)b21'a -- £.1,=0 k-

n-I n-2 n-j
A-', f= -b(Z. b2i, _(-b)b2 i, . . ., (-b)j-lb2i'. .. , (-b)"-),

i=O i=O i=0

A- 1 '(I + !TA-1Iif)-l = (-b,l-.. (-b)1 1 - (2-2)"' (-b)n 1 - T-2

1 - b2n I..(b~ b2n)

The final solution is

X =: - :E2Y, (23)

where the vector y is tLe right side of equation (22). Like the symmetric case, only the addition of

the first k2 elements in equation (23) may be needed for a given accuracy for some integer k2, and

Jb12(n-i) mdy be less than machine accuracy for 0 <_ i < k2 when n is large. Let

= = (-b, (-b)2 , ... , (-b)k2, 0,..., O)T. (24)

The modification computation for the almost symmetric Toeplitz system is given in Figure 6. The

algorithm for solving the almost symmetric Toeplitz systems is similar to the algorithm for solving

the symmetric Toeplitz system (see Figure 5), except in step 2 the new modification (Figure 6) is

used to replace the symmetric Toeplitz system modification.

Dol00 i= 1, k2
X = -ii -- i2Pi

Figure 6. Modification for almost symmetric Toeplitz system.
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4 Accuracy Analysis

In a previous section, the claim was made that the AXPY operations and modifications can be

truncated without influencing the accuracy. In this section, we will study the truncation accuracy.

For simplicity, we truncate loop 20 and loop 40 at the same step k. The norm used in this section

is the LI-norm.

4.1 Accuracy Study of the Simple Prefix Method

Let i, y be exact solutions as

y = b.[b,1,01 -d,

= (I+L+L2 +-..+L+n-)b.d,

S- b-[O,1,b]-1 [b, 1,0]- 1 .d

(I (+VU+U2 +. +V"n-1)..

Let y* and V' be the solutions given by loop 20 and loop 40, respectively, as

y* = (I+ L+...+ Lk-1).b d,

where k is a power of 2, and
j, = (I + U +-- + Vk-I)y*.

Also, we define !* as a hypothetical solution by

j* = (I + U +.. + uk-I)y.

The difference between i and i* is

i-i" =(I+U+...+Un-l)y-(J+U+.-.+Uk-I)y

= (Uk + Uk+l +" .+ U"n-)y
= (uk + ... + un-1)(1 - u).i

= (Uk - v)i.

Thus, we find
5 I - illl < lUk l -lll -_ < Iblk(l1 + IbIl"-k). (25)

12



Equation (25) gives the relative error between i and I*. Because the difference between i* and V'

is
i" -V• =(I + U+... + Ul-,) -(I + u+... + Uk-)y*

= (I + U +... + U k-))(Y - Y*)
= (I + U +... + Uk-1)(Lk +... -+ Ln-1),*b -d

= (I + U +... + Uk-1 )(Lk +... -+ Ln-1 )(I - L)(I - U)i

= (I+... + Uk-1 )(Lk - L n)(l - U)i,

the norm becomes Ile: - VII I - Iblk -I1il1 < I -1 bI. Ibl' (1 + IbInk)(1 + Ibl). (26)

If equations (25) and (26) are combined, then the relative error between the exact solution i and

the truncated solution V' is

Pi- i'll < i P-e F*I Ph* - V'II
Hi ll Hill HIIll

1- -blk(,
- Iblk(X + lbl-k)(1 + I 7- (1 + Ibl))

< 2.Iblk.(1+ IbIn-k).

4.2 Final Accuracy of Symmetric Toeplitz Systems

The truncation error of the simple prefix method (Figure 1) will be carried into the modification

step and will influence the accuracy of the final solution. Let x be the solution of a symmetric

Toeplitz tridiagonal system (10) and x* be the corresponding solution that has been modified with

the truncated solution,

x = i-•lz,

X* il Z,

w here z - b 1-2nlb' 1 " -0 n-l) -b )T

w- b2(,+l),I (b), ... (-b)n-I 1b ) see equation (19). The error gener-

ated by this truncation is

lix - z*hh = l(i -Vi) + (ii - i4)zII

P ii - V'Ih(1 + llzll).

The norm of vector z can be computed directly as

13



bI V n-1

lzil = 1 - b 2 ('n+ 1 ) F, I(b)Y(1 - b2(n-i))A

b2 n-1 n-1

P- 1-n b (Z I lb: + E Ib2 "-i)
i=O i=O

b2 (1 + IbIn+l)(1 - Ibrn)
I b2(n÷l) ' (1 - Ibl)

:5 b 2 I - Ibln) < b_ 2 _ b
(I - lbln+,)(l -Ibl) 1- --Ib- la -f1

Therefore,

Ilix- x~l JbI• •1( ll• 1
lal - 1 (27)

= IIK- IcI-1 (28)

S,(I - IbI + IbI2 )<P-VK(91I b -1b1 I (29)

and

P I1•- (1- II -rbI + IbI2l (30lix1i IIxII 1 -Ib) (30)

__I~- V'II Hill ( 1 - JIb + 1512

The only unknown in the right side of equation (31) is W-{, where i is the solution of equation (13)

and x is the solution of equation (10). For a symmetric Toeplitz system,

A = A + AA,

where AA is given by equation (18). If equations (10) and (13) are combined, we have

(A + AA)z = Ai,

(I + A-' AA)x = i,

and adHll < III + A-1AAII. 
(32)II~llI

After several calculations, we find

14



1 -b bV (-b I-
I -b (-b)-2 -b

b Pbb

bI -- 1b
(-b)* n-1 -b I

and
" b2 i 0 0

i=1- (-b )biO 0

-=A= •-(-b) 2b2i 0 0

(-b)n+1  0 0

Therefore,

II'A-I AAII -<'i=On- 1•?bb(-b) 2'-Ol _-b2

bV n-1

1-6 Y- 0i=- Ib'(1 -b2(n-0)l

andIII++ b 2 ( 1 + Jb~n'l 1)(1-Jbln)

and
II1A1A II•1+ b2  (1 + Ibl•~'+)(l -Ilbl')

(1 - b 2) (1 -Ibl)

The relative error of the solution to equation (10) is

lix- X*li < Pi- 'll lliI1 (33)I1x11 - I1•1 1 i ll j II I- IbI

< Iblk(1 + lbl-k) (1 - Iblk)(1 + 161) b2 (1 + Ib.n+')(I -bln) (34)
I -+b 1 - JIb k (I1-b2)(l -IbI)

When the order of the tridiagonal system n is large, lbln may be less than machine accuracy. In

this case, the inequality (34) becomes

lix - X- lbIk(1 + JIbI nk- (I - Ib+k)(1 + Ib) +b ) (35)

when truncation is applied in the modification. In addition to the truncation error carried from

step 1, the truncated modification will also generate truncation error. If

x =x-I -I,

15



(Figures 4 and (20)), then

x - ' X -, (• l )-;•') + Zl(z - )

The Ll-norm is given by

lix -4 :5l I1P- V11l + I1P-i'11" 11411 + I1•11" Ilz- ill

-< Ili - V'11(0 + Hill1) + Ilxl.- Ilz - ill,

which leads to __1_____- r ll < 1 - :•'11 I1l 11I
li1z 11 -1P "ll 1 + l1li1) + Ilz - il1. (36)

In equation (36),

bz V n-1

Iz- zlI - b2(,+ 1) >Z lb(1 -

b 2 ni-1

- 1 - b2(n+l) E lbik' (1 - b
j=O

where j = i - kj, nl = n- kj. Then

liz -i lblkI+ 2  (1 + Ibll+l)(1 - lblnl)llz 41 _ 1- b2(n'll) "(1 - Ibl)
< lblkl+ 2  (1 + lbln1'+)(i- lbln 1)

- 1 - b2(n1+l) (I - lbl)

< lblkl+2

1-1bl"

Note that 1 < Ilzil, so that we have the inequality

lIx-x'II liz Xiii<' iPiH(1 + izD )+ iblk1+ 2

lxi1 - H lll lxii 1 - IbI

< bi'• (1+ (1 - iblk)(l1+ lbl)( b2  ) ibikl+ 2

I 1- Jb bl )-- f1 (Il-b2)(- - lbl)) I i-b"

The error introduced by the truncated modification is insignificant if k, > k - 2. In practice, we

can choose k, = k and use the inequality (34) to compute the truncation number k.

4.3 Accuracy of Solving Almost Symmetric Toeplitz Systems

Following the similar arguments given in last section, error bounds can be obtained for almost

symmetric Toeplitz systems. For almost symmetric systems, we have a different modification
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vector y and a different modification matrix A!A. From equation (23), the exact solution to the

almost symmetric Toeplitz system is

X = i - i2Y,

where

y (-b,(-b)2(1- b2n1 - b2

The norm of vector y is

n 
n

- b2n (•lbl' + E Ibl-)
i=1 i=l

I (Ibl(1 - Ibn)(X + [bn+l)) I b]
I- -- b2n (I -- Ibl) I- 1 Ib---/

Let x* be the solution modified with the truncated solution as

X* = f, _ 4•Y,

where V, V are the same as defined in Section 4.1. Then, following a similar deduction for the
inequality (29), we have

lll - z'l __II :5 - V'II(I + Illll),

lix - X*II < Il-_ -'II. lll l-- Ib
*-1'(+ 1 bI)< IP- - V lll -I__

-l1ll lIxI 1 - b

The above inequality is in the same form as inequality (31), except that the ratio is different
for the almost symmetric system. For the almost symmetric Toeplitz system,

X = A + A'A,

where AA is defined by equation (21). By direct calculation, we find

F_= -b -4 b"b 0 0
0 Z.t 2 (. )2 b2 i 0 0

,- = 0 0 0
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Therefore,

n-I ( -b)'+ ( b n -i))
IIA- 1 AAII < E (-b b2)(1i=OII

< [bI(1 + Jbin+l)(1 - bb'n)
(I - b2)(1 - bI)

For the almost symmetric system,

1 < III + + 'Aj < 1+ ti'A- H.

(See inequality (32).) We conclude that

Ux - z1* < i bIk(1 + ibIn-k) ( +(1 - IbIk)(1 + [b[) +-b b(1 + IbI+')(1 - Ifbl) (37)

1- fb1- I J-\. (1- b2 )(1 - b 2) - (38)

When compared with inequality (34), the numerator of the last term in inequality (38) is slightly

increased.

If the modification is truncated to k2 (Figure 6), then

x: =I = ig

Following the derivation of inequality (36), we have

ffa:- xff} < ___- *'ll. }]_ll .(lI +ll~l)+fly- •ii, (39)
IIIx 11I P - VlII PII•I

where

(lY- gj! n-1 (-b)i'+ -b(I O-i))

S-b2ni=k2II

On E •2, Ib'(1 -bm-~
imk2

< Ibjk2+1 (1 + IbIn-k2-1)( - Ibn-k2)

1 - b2, (1 - IbI)
< Jbfk2+
- 1 -Ibl"

18



Thus,

______ ______ (1- k)(1 +kb)2+1_______ ____lxi 1b I-lb +JJ 'b' 1- Ib(0lixJJ - 1 -lb I 1 --- i 1J+ (1 - b2)(1 - Ibl) I -I b-----

Similar to the symmetric case, the error introduced by modification truncation is insignificant

if k2 > k - 1. We could choose k2 = k and use inequality (38) for error estimates.

5 Experimental Results

In this section, the performance of the SPP algorithm on the MasPar parallel computer and on the

Cray vector computer will be presented.

5.1 Parallel Computing

The MasPar MP-1 is a distributed-memory massively parallel SIMD computer with a high-speed

two-dimensional toroidal mesh topology. A control unit (ACU) has a direct connection to all

the processing elements (PEs) and issues instructions at a 12.5 MHz clock rate. Each processing

element in the array is a 4-bit custom load and storage processor with a minimum of 16 kilobytes

of memory. Communication is relatively cheap on the MasPar. For example, on the MasPar M-1,

a double-precision multiplication function is ten times more expensive than sending the product to

an adjacent PE.

Table 1 gives the computation and communication count of the simple parallel prefix (SPP)

algorithm. We assume that both the AXPY operations and the modification are truncated after k

operations; the modification vector used is either equation (20) or (24), respectively. The b2', i =

1,... ,k, are computed sequentially, or redundantly, on each PE. The modification vector i or

will be computed concurrently on different PEs. We count a power-function computation as 8

floating-point operations. So, the modification phase costs 10 parallel operations in total. The

calculation of b (equation (14)) is not considered. In the computing phase, 2 -log(k) parallel, one-

to-one communications are required. We use a• to represent the one-to-one communication. On

the MasPar, the one-to-one communication is achieved by using the router command. We use /

to represent the broadcast. On the MasPar, the broadcast is achieved by transferring the local

data to ACU and then distributing it to all PEs. One broadcast communication is needed in the

modification phase. Because the tridiagonal systems that arise in the compact scheme have multiple

right sides, the computation and communication count for solving multiple right-side systems is

also listed in Table I, where the computation of b2 and the modification vector are not considered.

Note that n, is the nuirber of right sides.

Two sample matrices are chosen to illustrate the performance of the SPP algorithm and to

verify the theoretical error bounds given in the previous section. Both of the matrices are almost

19



Table 1. Computation and communication count of the Simple Prefix Algorithm
Best SPP

System sequential Computation Communication
Single system 8n-7 5.log(k) + 10 2.log(k) • a +/3

Multiple right sides (5n - 3) * nl (4.log(k) + 2) * n1 (2.log(k). a +/3) * n1

symmetric Toeplitz matrices that arise in the compact schemes. One matrix is

A1 , [1,3, 1] - AA.

The other matrix is

A2 = [1,10,11- A-
Equation (18) defines AA. The corresponding solution of equation (14) is b = 3 and b = •4

for A1 and A2, respectively. The error is measured relative to the LU solution. The accuracy

comparison for solving system A, is given in Figure 7. In this implementation, no truncation is

implemented in the modification phase, and the prediction formula used is equation (38). In solving

A2, the modification is applied at the modification stage with k2 = k, and the prediction formula

used is equation (39). The accuracy comparison for solving system A2 is given in Figure 8. From

Figures 7 and 8, we can see that the theoretical bound matches the measured results well.

-20 1I I I I

-15 Theoretical bound --

Measured

Error -10

-5

0
5 10 15 20 25 30 35 40

Order of truncation

Figure 7. Measured and predicted accuracy for solving matrix A 1 .

Figure 9 shows the speedup of the SPP algorithm over the best sequential algorithm for solving
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Figure 8. Measured and predicted accuracy for solving matrix A 2.

a single system. The best sequential algorithm is based on the LU decomposition, and is fine-

tuned to take advantage of the almost symmetric Toeplitz structure. All computations are double

precision. Truncation numbers k = 64 and k = 16 are chosen to achieve double-precision (10-16)

and single-precision (10-') accuracy, respectively. The order of matrix is the same as the number

of PEs available. Because of the high-speed communication, with n1 equal to lk, 2k, 4k, 8k, and

16k, the execution time is not noticeably changed in parallel processing. The sequential algorithm

is implemented on a single PE. Because of memory limitations, only small systems are solved by the

sequential algorithm. The data used in Figure 9 is predicted based on the small-size timing. Figure

10 shows the corresponding speedup of solving a system with 1024 right sides. The factorization of

the matrix is not included in timing for solving the system with multiple right sides. The speedup

is slightly higher for solving multiple right-side systems.

Because the order of the matrix increases linearly with the number of PEs available, the speedups

given by Figures 9 and 10 are memory-bounded speedup [20]. From table 1, the problem size, in

terms of floating-point operations, is a linear function of the order of the matrix. The linear memory-

bounded speedups given by Figures 9 and 10 indicate a linear speed increase. In accordance with

the isospeed metric of scalability [22], the SPP algorithm is perfectly scalable on the SIMD MasPar

machine. Because the isoefficiency metric [11] is equivalent to the isospeed metric when serial

execution has a fixed speed [22], the SPP algorithm is also perfectly scalable with the isoefficiency

metric. The reader may refer to [22] and [11] for more information regarding scalability of parallel

algorithm-machine combinations.
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Figure 9. Speedup over the best sequential algorithm on single system.
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Figure 10. Speedup over the best sequential algorithm on system with 1024 right sides.
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5.2 Vector Computing

Vector comput; ,g is widely used at national laboratories, universities, and supercomputing cen-

ters for large- cale computing applications. For this reason, a CRAY-2S/4-128 at NASA Langley

Research Center was also used to test the SPP algorithm on a vector machine. The Cray-2 no-

tation "S" indicates that the memory is static rather than dynamic, and "4-128" indicates that

the machine has 4 processors and 128 million 64-bit words of central memory. Each CPU is a

register-to-register vector processor with a 4.1 nsec minor cycle clock that can generate 100-300

megafiops. The four processors can be used for a single problem (multi-tasking) to achieve over 1

gigaflop of performance.

The speed of a vector machine depends on the vector length, vector stride, and the computa-

tional richness of the do loops. Because the vector register length is 64 and the CPU is extremely

fast in carrying out floating-point opeations, once operands are in the registers, best performance

can be obtained with do-loop which have lengths that are multiples of 64, which are computationally

intensive, and which use unit stride (separation of memory between elements).

The chosen sample t-ridiagonal matrices are almost symmetric Toeplitz and correspond to the

first and second derivative compact-difference operators (2) and (3). The diagonals and necessary

coefficients are:

A3 =[1,4,1] with a, b=24. /3

A 2 = [1,10,1] with a, b=5 -2/6

For the first experiment on the Cray, single tridiagonal solves were made. The test problem

used here and in the rest of this section corresponds to f(x) = 3x 3 - 2x + 1, which has smooth

exact derivatives f'(x) = W - 2 and f"(x) = 18x. Figure 11 shows the performance of the

SPP in terms of CPU seconds and th:e matrix order compared with the LU decomposition for

computing f' and f". In addition to the reduced memory requirements of SPP compaid to LU,

the performance shown in Figure 11 clearly indicpted that the SPP is faster on the ve, !or machine

than the conventional LU solver; the benefits increase with the operator size. The significant

difference between the SPP and LU timing can be explained in light of vector operations versus

scalar operations. The SPP approacli can be vectorized over the direction of the solve; the LU

approach must use scalar operations. For the SPP approach, note that the diagonal dominance of

the second-derivative operator f" leads to faster computations compared with the first-derivative

operator f'. This time reduction results from the truncation of the SPP approach to obtain a

predetermined level of error (10-14), which is essentially machine precision. For the first-derivative

operator (A 3 ), k = 32 and k, = 24; for the second-derivative operator kA2 ), k = 16 a'u k, = 16,

where k and k, are the truncation numbers on the solving and modification phases, respectively.

Real applications which use compact-difference operators require many tridiagonal solves that
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Figure 11. Timing of SPP and LU algorithms: single system.

correspond to time-marching algorithms and involve many right sides corresponding to the mul-

tidimensionality of the application. In this second evaluation, with the same accuracy 10-14, the

performance of the SPP is compared with LU for multiple right sides. Shown in Figure 12 are

CPU times for the SPP and LU for various orders of the second-derivative compact operator A2 .

(Similar results were obtained with the operator A3 but are not shown.) For applications that

use small operators (N < 96), the LU solver is more efficient than SPP; for applications that use

large operators (N > 96), the SPP is much cheaper than the LU approach. This difference occurs

because the LU approach vectorizes the do loop associated with the number of right sides, and

the SPP vectorizes in the direction of the tridiagonal solve. With some creative programming, one

could potentially vectorize the entire SPP approach with a single array, while the LU approach can

vectorize over the right-side arrays.

In the final experiment, the ability of SPP to control truncation error is demonstrated. The

highest order of accuracy in the solution is based on the truncation error of the compact-difference

approaches in equations (2) and (3). As a result, to require machine-zero is overkill for the compact

solver and leads to unnecessary computational cost. By using the inequality (40), the choice of

truncation can be determined based on a desired error bound. Figure 13 shows the SPP results

of truncations k = 8 and k = 32, which correspond to errors 10-5 and 10-14, respectively. If the

accuracy of the SPP is relaxed, the computational cost decreases b. , factor of 2.
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Figure 12. Timing of SPP and LU algorithms: multiple right sides.
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Figure 13. Timing of SPP with different accuracies.
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6 Conclusion

A central goal of parallel processing is to achieve better, more accurate solutions. Because obtaining

more accurate solutions, in general, means adding more discretization points, larger systems result

and require greater computational power. The accuracy of a simulation solution is also bounded

by the discretization scheme used. A clear requirement for obtaining a more accurate solution is to

adopt discretization methods with high-order accuracy. Previously, a highly accurate discretization

scheme, the compact finite-difference scheme, has been proposed. However, the almost symmetric

Toeplitz tridiagonal systems that arise from compact schemes are sequential in nature and difficult

to solve efficiently on parallel computers. In this paper, we have introduced a parallel algorithm,

the simple parallel prefix (SPP) algorithm, for compact schemes.

The SPP algorithm is designed for fine-grain computing. With n processors, the SPP algorithm

solves an n-dimensional system with 2 log(n) + 1 AXPY operations. Two prefix communications

are required in the solving phase and one broadcast communication is required in the modification

phase. In comparison with existing tridiagonal solvers [17, 8], the SPP algorithm is simple in

computing and simple in communication. It requires storage of only one log(n)-dimensional vector

for the computing phase and one n-dimensional vector for the modification phase. When the

tridiagonal system is diagonally dominant, both the computing and the modification phases can

be truncated without degrading the accuracy. Memory requirements will be further reduced when

truncation is applied. A detailed accuracy analysis has been conducted to find the appropriate

truncation number. Experimental results show that the SPP algorithm achieves a speedup greater

than 1000 over the best sequential algorithm on a 16K PEs MasPar M-1 SIMD parallel computer.

In addition to the good performance on the SIMD machines, the SPP algorithm also out performs

the best sequential algorithm on a vector machine (Cray 2), even on systems with multiple right

sides. Experimental and theoretical results show that the SPP algorithm is a good choice for

compact schemes and for the emerging high-performance parallel computers.

The SPP algorithm is designed for almost symmetric Toeplitz tridiagonal systems. It can be

modified for different boundary conditions and for cases where the number of processors p is less

than the dimension of the system. However, generalization of the algorithm for general tridiagonal

systems or for band systems is unlikely.

The work presented in this paper is a continuation of efforts to design efficient parallel solvers

for compact scheme. An efficient solver, the PDD algorithm, for coarse- or median-grain computing

has been proposed (18]. The PDD algorithm and the SPP algorithm can be combined on parallel

machines with vector processing units.
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